

Sequences

Indices

FDP Equivalences

Term – each number or object in a sequence.

Linear sequence – a number pattern that increases or decreases by a **common difference** each time.

Common difference – the amount a linear sequence increases or decreases by. e.g. 1, 5, 9, 13... has a common difference of +4.

Geometric sequence – a number pattern made by multiplying by the same value each time. They are non-linear.

Ascending – smallest to largest.

Descending – largest to smallest.

Index - a number which tells you how many times a number is used in a multiplication $e.g.\ 2^3 = 2 \times 2 \times 2$

Base - the number that gets multiplied when using an index.

$$\longrightarrow 3^5 \longrightarrow = 3 \times 3 \times 3 \times 3 \times 3$$

Tenth =
$$\frac{1}{10}$$
 = 0.1 = 10%

Hundredth =
$$\frac{1}{100}$$
 = 0.01 = 1%

Half =
$$\frac{1}{2}$$
 = 0.5 = 50%

Third =
$$\frac{1}{3}$$
 = 0.333333 ... = 0.3 = 33.3%

To change a percentage to a decimal, divide it by 100.

Quarter =
$$\frac{1}{4}$$
 = 0.25 = 25%

Fifth =
$$\frac{1}{5}$$
 = 0.2 = 20%

Laws of Indices

$$\overline{a^m \times a^n = a^{m+n}}$$

$$\frac{a^m}{a^n} = a^m \div a^n = a^{m-n}$$

$$(a^m)^n = a^{m \times n}$$

 $\frac{\text{Examples}}{3^8 \times 3^2} = 3^{10}$

$$\frac{3^8}{3^2} = 3^8 \div 3^2 = 3^6$$

$$\frac{\text{Examples}}{5\% = 0.05}$$
(38)²= 3¹⁶